On generalized biparametric multipoint root finding methods with memory
نویسندگان
چکیده
منابع مشابه
On generalized multipoint root-solvers with memory
The improved versions of the Kung–Traub family and the Zheng–Li–Huang family of n-point derivative free methods for solving nonlinear equations are proposed. The convergence speed of the modified families is considerably accelerated by employing a self-correcting parameter. This parameter is calculated in each iteration using information from the current and previous iteration so that the propo...
متن کاملA Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials
A family of simple derivative-free multipoint iterative methods, based on the interpolating polynomials, for solving nonlinear equations is presented. It is shown that the presented n-point iterative method has the convergence order 2n−1 with n function evaluations per iteration. It is an optimal iterative method in the sense of the Kung-Traub’s conjecture. Numerical examples are included to su...
متن کاملAn Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations
In this paper, a family of Steffensen-type methods of optimal order of convergence with two parameters is constructed by direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub (J. Assoc. Comput. Math. 1974, 21, 634–651) that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Furthermore, ...
متن کاملInterpolatory multipoint methods with memory for solving nonlinear equations
A general way to construct multipoint methods for solving nonlinear equations by using inverse interpolation is presented. The proposed methods belong to the class of multipoint methods with memory. In particular, a new two-point method with memory with the order ð5þ ffiffiffiffiffiffi 17 p Þ=2 4:562 is derived. Computational efficiency of the presented methods is analyzed and their comparison ...
متن کاملA new family of four-step fifteenth-order root-finding methods with high efficiency index
In this paper a new family of fifteenth-order methods with high efficiency index is presented. This family include four evaluations of the function and one evaluation of its first derivative per iteration. Therefore, this family of methods has the efficiency index which equals 1.71877. In order to show the applicability and validity of the class, some numerical examples are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.05.013